-16(x)^2+96x+6=0

Simple and best practice solution for -16(x)^2+96x+6=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16(x)^2+96x+6=0 equation:



-16(x)^2+96x+6=0
a = -16; b = 96; c = +6;
Δ = b2-4ac
Δ = 962-4·(-16)·6
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-40\sqrt{6}}{2*-16}=\frac{-96-40\sqrt{6}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+40\sqrt{6}}{2*-16}=\frac{-96+40\sqrt{6}}{-32} $

See similar equations:

| 7x+-16=2x+29 | | 1/2x+5/4=5/2 | | 8(5g+5−2)= | | 8=2(h+2) | | x+6/2x=3/4 | | 19=3(z-14)+4 | | x+2x+143+152+116+125+140+139=1800 | | (9x-2)=52 | | 3(4x+1)-2(2x-5)=5 | | -18n+6=-16n-2 | | -7+x=7x-1 | | x+2x+143+152+116+125+140+139=360 | | -7=2(w-19)+-3 | | -27=4y-7 | | 65+(19x-13)=90 | | 65+(16x-13)=90 | | 8X+13=3(4x+1)-2(2x-5) | | 5t−1=(t-17)/3 | | 65+(19x+13)=90 | | 93+12m=3(4m−1)+96 | | -6x-3=3x+105 | | x+2x+89+67=360 | | x-8-3x=8x+2 | | .45x+.25x=200 | | 3(f+9)-16=-13 | | 6(x-7)(2x+3)^5(x-7)(2)+(2x+3)(1)=0 | | 0.2a=49 | | 79+(5x+6)=180 | | H(t)=-4.9t^2+26.95t+4 | | (7x)+(2x+36)=180 | | -2-x=-2x-3 | | 6x^2+2x=21 |

Equations solver categories